SciVoyage

Location:HOME > Science > content

Science

Moment Generating Function of the Product of Two Independent Standard Normal Random Variables

January 07, 2025Science3785
Moment Generating Function of the Product of Two Independent Standard

Moment Generating Function of the Product of Two Independent Standard Normal Random Variables

In probability theory, the moment generating function (MGF) is a powerful tool that provides a way to compute moments of a random variable. This article delves into the computation of the moment generating function for the product of two independent standard normal random variables. We will walk through the derivation step-by-step and highlight the key properties of this interesting distribution.

Introduction to Standard Normal Distribution

Let's start by understanding two independent standard normal random variables (X) and (Y). A random variable is called standard normal if its probability density function (PDF) is given by:

$$f_X(x) frac{1}{sqrt{2pi}} e^{-frac{x^2}{2}} quad text{and} quad f_Y(y) frac{1}{sqrt{2pi}} e^{-frac{y^2}{2}} quad text{for} quad x, y in mathbb{R}$$

Since (X) and (Y) are independent, their joint probability density function (JPDF) is simply the product of their individual PDFs:

$$f_{X,Y}(x, y) f_X(x) cdot f_Y(y) frac{1}{2pi} e^{-frac{x^2 y^2}{2}} quad text{for} quad x, y in mathbb{R}$$

Computing the Moment Generating Function

The moment generating function (MGF) of a random variable (Z) is defined as:

$$m_Z(t) E[e^{tZ}] int_{-infty}^{infty} int_{-infty}^{infty} e^{txy} f_{X,Y}(x, y) dx dy$$

Substituting the joint PDF into the definition of the MGF, we get:

$$m_{X,Y}(t) int_{-infty}^{infty} int_{-infty}^{infty} e^{txy} cdot frac{1}{2pi} e^{-frac{x^2 y^2}{2}} dx dy$$

To simplify the evaluation of this double integral, we use a change of variables and complete the square. Let's first rewrite the exponent:

$$m_{X,Y}(t) frac{1}{2pi} int_{-infty}^{infty} int_{-infty}^{infty} e^{-x^2 - 2txy - frac{y^2}{2}} dx dy frac{1}{2pi} int_{-infty}^{infty} int_{-infty}^{infty} e^{-x - ty} e^{-frac{y^2 (1 - t^2)}{2}} dx dy$$

By making a change of variables:

$$u frac{x - ty}{sqrt{2}} quad text{and} quad v y sqrt{frac{1 - t^2}{2}}$$

The Jacobian of this transformation is:

$$frac{partial (u, v)}{partial (x, y)} frac{1}{sqrt{1 - t^2}}$$

So the change of variables yields:

$$m_{X,Y}(t) frac{1}{2pi} cdot frac{2}{sqrt{1 - t^2}} int_{-infty}^{infty} int_{-infty}^{infty} e^{-u^2} e^{-v^2} du dv$$

This is now a product of two Gaussian integrals:

$$m_{X,Y}(t) frac{1}{pi sqrt{1 - t^2}} left( int_{-infty}^{infty} e^{-u^2} du right)^2 frac{1}{pi sqrt{1 - t^2}} cdot (sqrt{pi})^2 boxed{frac{1}{sqrt{1 - t^2}}}$$

Conclusion

In conclusion, the moment generating function for the product of two independent standard normal random variables is a useful representation that simplifies the computation of moments. This result has several interesting applications in statistics and probability theory.